NCN Project



Contact information:

K Fortuniak

Krzysztof Fortuniak

Department of Meteorology and Climatology
University of Lodz
Narutowicza 88
90-139 Lodz, Poland
email: kfortun@uni.lodz.pl
 


W Pawlak

Wlodzimierz Pawlak

Department of Meteorology and Climatology
University of Lodz
Narutowicza 88
90-139 Lodz, Poland
email: wpawlak@uni.lodz.pl
Project goals

The main goal of the project is to recognize the surface-atmosphere exchange of main greenhouse gasses (water vapour, carbon dioxide and methane) on the swampy ground of Biebrza National Park. Turbulent fluxes of CO2, CH4 and H2O are determined in the whole ecosystem scale with the aid of the eddy-covariance method since November 2013. The project provides information on net turbulent fluxes of these gasses and their relations to meteorological conditions. The continuous measurements in multi-annual time span allow to determine  daily, monthly and annual totals of net emission/storage of the investigated gases and the energy balance components for Biebrza mires.  Additional measurements of meteorological parameters allow to determine relations between GHG fluxes and their steering parameters.

Site location

The investigations were carried out in one of the biggest coherent lowland wetland area in Central Europe – the Biebrza river valley, Poland. The valley is subdivided by morphological features into three parts: the Upper, Middle and Lower Basin. The measurement site (53o35'30.8"N, 22o53'32.4"E, 109 m asl) is located in the Middle Basin at the area of Biebrza National Park close to the village Kopytkowo. The site is located at very flat surface south to the famous peatland called “Czerwone Bagno”. The analyzed part of the Middle Biebrza Basin located along the course of Kopytkówka river is a fen peatland, which soils are slightly decomposed due to the dehydration. In the nearest neighborhood of the measurement site, the vegetation is dominated by the mixture of reeds, sedges and rushes typical of Biebrza wetlands.





                        site map
Fig. 1 Location of the measurement site in Biebrza National Park and the nearest neighborhood of the site.
Legend: 1 – area dominated by medium high sedges, 2 – area dominated by American Reed and ferns , 3 – area dominated by calamus, 4 – grassland, 5 – agriculture, 6 – forest.



view of measurement site

Fig. 2 View of measurement site


Instrumentation

Fast respond sensors (10 Hz)
Sonic anemometer RMYoung 81000 (R. M. Young) 3.7 m 
Open path CO2/H20 gas analyzer Li-7500 (Li-cor) 3.7 m
Open path CH4 gas analyzer Li-7700 (Li-cor) 3.7 m
 
Slow respond sensors
Net radiometer CNR1 (Kipp& Zonen) 2.7 m
PAR quantum sensor (up and down) PQS 1 (Kipp& Zonen) 2.7 m
Temperature and humidity HMP60 (Vaisala) 2.2 m and 0.5 m
Cup anemometer A100R (Campbell Sci.) 3.0 m
Wind vane W200P (Campbell Sci.) 3.0 m
Rain gauge ARG100 (Campbell Sci.) 2.25 m 
Barometric Pressure Sensor CS100 (Campbell Sci.) 1.5 m
Soil Water Content Reflectometer CS616 (Campbell Sci.) -0.2 m
Soil heat flux plate HFP01SC (Campbell Sci.) -0.2 m
Soil temperature Pt100 (Campbell Sci.) -0.05 m
 
Data logging and storage
Data logger  CR5000 (Campbell Sci.)  
Industrial computer TANK-101B (IEI Integration Corp.)  
 


tower instrumentation
Fig. 3 Measurement screen and instrumentation

Data processing

The turbulent fluxes of momentum, sensible and latent heat, CO2 and CH4 are calculated with a standard methodology on a 1-hour basis using both a software developed in Department of Meteorology and Climatology UŁ and the EddyPro 5.2.1 (LI-COR, Lincoln, NE). Fluxes are calculated by standard block averaging with the optimal time lag between two datasets set by covariance maximization within a window of ±2 s. The double rotation method in natural wind coordinates, proposed is used to reduce errors due to misalignment of the sonic anemometer. The humidity correction is applied to the sonic temperature, as well as the WPL correction,  due to fluctuations in air density. Spectral losses are corrected. For some analysis fluxes are calculated on 15-min and 30-min basis too.

Three stationarity tests are used in data quality check: the test proposed by Foken & Wichura (1996) with the critical value RNCov = 0.3; the non-stationarity ratio, NR, given by Mahrt (1998) with the critical value NR = 2; and the relative covariance stationarity criterion introduced by Dutaur et al. (1999) and modified by Nemitz et al. (2002) with the critical value of relative covariance stationarity coefficient, RCSC = 0.5. The data are additionally screened for friction velocity < 0.1 m/s. Moreover the seasonally dependent physical thresholds are set on the base on data analysis.

Beside raw data three other types are used:

HQ – high quality data approved by all 3 stationarity test and flagged “0” by EddyPro ;

MQ – medium quality data approved by one test or flagged “0” by EddyPro;

GF – gap filled data – different algorithms are used in gap-filling procedure.

CO2 CH4 fluxes
Fig. 4 Example of data - measured 1-hour CH4  and CO2 fluxes. Light grey dots indicate gap filled (GF) data; dark grey dots – data approved by one of the statistical tests or by EddyPro; black dots – data approved by all three tests and EddyPro; dashed lines – upper and lower limits for the fluxes in gap filling.




Publications


Fortuniak, K., Pawlak, W., Siedlecki, M., Zieliński, M., 2013, Surface energy balance and exchange of greenhouse gases in Eastern Poland wetland – a new EC site in Biebrza National Park, Proceedings of  7th Study Conference on BALTEX, 10-14.06.2013, Borgholm, Sweden.

Pawlak, W., Fortuniak, K., Wibig, J., Piotrowski, P., 2014, Greenhouse gases exchange at wetlands – methodological considerations on the experience of one year eddy covariance measurements at Biebrza National Park, Poland, Proceedings of the 4th International Field Symposium „West Siberian Peatlands and Carbon Cycle: Past And Present”, 04-17.08.2014, Novosibirsk, Russia, 148-151.

Ziułkiewicz, M., Forysiak, J., Fortuniak, A., Fortuniak, K., Kloss, M., Okupny, D., 2014, Selected environmental characteristics of the greenhouse gases measurement site at wetland of the Biebrza National Park, Poland, Proceedings of the 4th International Field Symposium „West Siberian Peatlands and Carbon Cycle: Past And Present”, 04-17.08.2014, Novosibirsk, Russia, 152-154.

Pawlak, W., 2014, Wymiana turbulencyjna dwutlenku węgla między atmosferą a terenem zurbanizowanym, rolniczym i podmokłym – różnice w rocznej i dobowej zmienności, Przegląd Naukowy – Inżynieria i Kształtowanie Środowiska, 64, 131-139.

Tołoczko, W., Niewiadomski, A., 2015, Measurements of selected greenhouse gases exhalation by using the closed-chamber technique and calculation of hour expiration with regard to CO2 emissions, Acta Universitatis Lodziensis Folia Geographica Physica, 14, 69-74.

Fortuniak, K., Pawlak, W., 2015, Preliminary results of two years CO2 and CH4 eddy-covariance flux measurements at Biebrza wetlands, Proceedings of Potsdam Greenhouse Gas Workshop - From Natural to Urban Systems, 19-23.10.2015 p. 55,

Fortuniak, K., (red.), 2016, Wybrane problemy pomiarów wymiany gazowej pomiędzy powierzchnią Ziemi a atmosferą na terenach bagiennych – doświadczenia trzyletnich pomiarów w Kopytkowie w Biebrzańskim Parku Narodowym, Katedra Meteorologii i Klimatologii WNG UL, 144ss. (PDF)

Fortuniak, K., Pawlak, W., 2016, Atlas parametrów meteorologicznych na stacji pomiarowej w Kopytkowie (Biebrzański Park Narodowy) w roku 2013, Katedra Meteorologii i Klimatologii WNG UL, 117ss. (PDF)

Fortuniak, K., Pawlak, W., 2016, Atlas parametrów meteorologicznych na stacji pomiarowej w Kopytkowie (Biebrzański Park Narodowy) w roku 2014, Katedra Meteorologii i Klimatologii WNG UL, 115ss. (PDF)

Fortuniak, K., Pawlak, W., 2016, Atlas parametrów meteorologicznych na stacji pomiarowej w Kopytkowie (Biebrzański Park Narodowy) w roku 2015, Katedra Meteorologii i Klimatologii WNG UL, 114ss. (PDF)




Katedra Meteorologii i Klimatologii, Wydział Nauk Geograficznych, Uniwersytet Łódzki

Narutowicza 88, 90-139 Łódź, Tel: +42-6655954, Fax: +42 6655951